
15-112
Fundamentals of Programming

Week 5 - Lecture 3:
More Advanced Recursion

June 23, 2017

nQueens Problem
Place n queens on a n by n board so that no queen is
attacking another queen.

 —> [6, 4, 2, 0, 5, 7, 1, 3]

list of rows

def solve(n):

nQueens Problem
Place n queens on a n by n board so that no queen is
attacking another queen.

n rows and n-1 columns

one queen has to be on first column

nQueens Problem

First attempt:

- try rows 0 to 7 for first queen
- for each try, recursively solve
the red part

Problem:
Can’t solve red part without taking into account first queen
First queen puts constraints on the solution to the red part

Need to be able to solve nQueens with added constraints.

def solve(n, m, constraints):
Need to generalize our function:

nQueens Problem

def solve(n, m, constraints):

n = number or rows

m = number or columns

constraints (in what form?)
list of rows

For the red part, we have the constraint [6]

nQueens Problem

def solve(n, m, constraints):

n = number or rows

m = number or columns

constraints (in what form?)
list of rows

For the red part, we have the constraint [6,4,2]

The constraint tells us which cells are unusable for the
red part.

To solve original nQueens problem, call: solve(n, n, [])

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[?,?,?,?,?]

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

def solve(n, m, constraints):

[5,7,1,3]

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]
[5,7,1,3] —> [0,5,7,1,3]

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]
Suppose no solution

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

NOT LEGAL

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

NOT LEGAL

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

NOT LEGAL

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

NOT LEGAL

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]
no solution

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

NOT LEGAL

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]

def solve(n, m, constraints):

nQueens Problem

n = 8

m = 5

constraints = [6,4,2]

[0,?,?,?,?]
no solution

def solve(n, m, constraints):

nQueens Problem

def solve(n, m, constraints):
 if(m == 0):
 return []

n = 8

m = 5

constraints = [6,4,2]

return False

for row in range(n):
if (isLegal(row, constraints)):

[0,?,?,?,?]

 newConstraints = constraints + [row]
 result = solve(n, m-1, newConstraints)
 if (result != False):
 return [row] + result

nQueens Problem

def isLegal(row, constraints):
 for ccol in range(len(constraints)):
 crow = constraints[ccol]
 shift = len(constraints) - ccol
 if ((row == crow) or
 (row == crow + shift) or
 (row == crow - shift)):
 return False
 return True

n = 8

m = 5

constraints = [6,4,2]

nQueens Problem

def isLegal(row, constraints):
 for ccol in range(len(constraints)):
 crow = constraints[ccol]
 shift = len(constraints) - ccol
 if ((row == crow) or
 (row == crow + shift) or
 (row == crow - shift)):
 return False
 return True

n = 8

m = 5

constraints = [6,4,2]

nQueens Problem

def isLegal(row, constraints):
 for ccol in range(len(constraints)):
 crow = constraints[ccol]
 shift = len(constraints) - ccol
 if ((row == crow) or
 (row == crow + shift) or
 (row == crow - shift)):
 return False
 return True

n = 8

m = 5

constraints = [6,4,2]

nQueens Problem

def isLegal(row, constraints):
 for ccol in range(len(constraints)):
 crow = constraints[ccol]
 shift = len(constraints) - ccol
 if ((row == crow) or
 (row == crow + shift) or
 (row == crow - shift)):
 return False
 return True

n = 8

m = 5

constraints = [6,4,2]

Flood fill

click def floodFill(x, y, color):
 if ((not inImage(x,y)) or (getColor(img, x, y) == color)):
 return
 img.put(color, to=(x, y))
 floodFill(x-1, y, color)
 floodFill(x+1, y, color)
 floodFill(x, y-1, color)
 floodFill(x, y+1, color)

U
D

R
L

Term Project

Some general rules

- SOLO: must do your own independent project.

- Can use any external materials
e.g. code, designs, images, text, sounds, …

These must be very clearly cited!

You’ll be graded on your original contributions.

This includes citing yourself!

Some general rules

- You will be assigned a “Mentor CA”:

Provides most of the support and guidance.

- Must use Python

Will grade your TP.

The overall process

Sun Mon Tue Wed Thu Fri Sat
1302328212619

432

Meet Meet Meet Meet

DEADLINE

Meeting 1

- Project proposal
> Define the problem

> Description on how you intend to solve it

> List all modules/technologies you plan to use

- Competitive analysis
> Find existing products similar to what you propose

> List features you plan to include

> List features you plan to change

Meeting 1

- Storyboard
> Hand-drawn pictures showing how app will run from
the perspective of the user.

- Timesheet
> timesheet.txt

> Keep track of the time you spend on the project.

- Technology demonstrations
> Demonstration of competency

- Code artifacts
> If you have any

Meeting 2

- Progress

- Timesheet

> A good amount of code

> Basic features implemented and functional

Meeting 3

- Working demo

- Timesheet

> A working B-level final project

> May miss some features, contain some bugs, etc…

Submission

- Project source files and support files

- Readme file (readme.txt)

> Python files + others (.jpg, midi, …)

> What is your project?

> How to install and run it

> How to download/install 3rd party libraries

Submission

- Design documents

- Project video

- Timesheet

> 1-3 minutes long

> Show the most important features, highlights

> Explain the problem, and how you solve it.

> Why you chose the particular functions, data
structures, algorithms that you used.

> Discuss the user interface choices.

Submission

Submission will be made to Autolab.

Single zip file.

Cannot exceed 10MB.

Submit complete version to your mentor.

You can run complete version in grading session.

Grading

- Complexity and sophistication

- Robust operational program

- User interface

- Effort

- Design

- Style

- Presentation

Important Factors
A+
A
A-
B+
B
B-
C+
C
C-
D+
D
D-
R

Grading

- Grading meeting:

- 2 TAs

- Demo your term project
- Be ready to walk the TAs through any part of the
code

HAVE FUN!

