
June 8, 2017

15-112
Fundamentals of Programming

Week 3 - Lecture 3:
Sets and dictionaries.

The Plan

> Efficient data structures: sets and dictionaries

What is a data structure?

A data structure allows you to store and maintain
a collection of data.

It should support basic operations like:

- add an element to the data structure

- remove an element from the data structure

- find an element in the data structure

…

What is a data structure?

A list is a data structure.

It supports basic operations:

- append()

- remove()

- in operator, index()

…

O(1)

O(N)

O(N)

One could potentially come up with a different structure
which has different running times for basic operations.

Motivating example

Car license plates
-Order number is arbitrary, some numbers may not exists

-Want to find if a plate with a certain number already exists.

How long does it take to search if a license plate exists ?

O(N)

 What if I know all the numbers are less than 10000 ?

Motivating example

…

m

1

Put number m at index m.
Create a list of size 10000.
Solution:

What is the running time for searching for an element?

O(1)

Motivating example

The sweet idea:
Connecting value to index.

…

m

1

Motivating example

What if the numbers are not bounded by 10000 ?

What if the plates contain letters as well ?

Questions

Extending the sweet idea

Storing a collection of strings?

…

Start with a certain size list (e.g. 10000)

s h(s)

Pick a function h that maps strings to numbers.

h is called a hash function.

Store s at index h(s) mod (size of list)

s

mod (size of list)

Extending the sweet idea
Potential Problems

Collision: two strings map to the same index

List fills up

Fixes

The hash function should be “random”
so that the likelihood of collision is not high.

When buckets get large (say more than 10),
resize and rehash: pick a larger list, rehash
everything

Store multiple values at one index (bucket)
(e.g. use 2d list)

HASH
TABLE

Extending the sweet idea

What did we gain:
Basic operations add, remove, find/search super fast
(sometimes (infrequently) we need to resize/rehash)

What did we lose:

No order

No mutable elements

Repetitions are not good

Sets

Introducing sets

- supports basic operations like:

s.add(x), s.remove(x), s.union(t), s.intersection(t)
x in s

Sets:
- a non-sequential (unordered) collection of objects

- no repetitions allowed

- look up by object’s value

- immutable elements

- finding a value is super efficient

Creating a set

s = set([2, 4, 8])

s = set([“hello”, 2, True, 3.14])

s = set([2, 2, 4, 8])

s = set([2, 4, [8]]) # Error

(sets are mutable, but its elements must be immutable.)

s = set(“hello”)

s = set((2, 4, 8))

s = set(range(10))

s = set()

{8, 2, 4}

{“hello”, True, 2, 3.14}

{8, 2, 4}

{‘e’, ‘h’, ‘l’, ‘o’}

{8, 2, 4}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Set methods

s.copy()

s.union(t), s.intersection(t),
s.difference(t), s.symmetric_difference(t)

s.add(x), s.remove(x), s.discard(x)

Returns a new set (non-destructive):

Modifies s (destructive):
s.pop(), s.clear()

s.update(t), s.intersection_update(t),
s.difference_update(t), s.symmetric_difference_update(t)

Other:
s.issubset(t), s.issuperset(t)

s t s t

The advantage over lists

1

print(5000 in s)

print(-1 not in s)

s.remove(100)

Super fast

Super fast

Super fast

Essentially O(1)

Example: checking for duplicates

Given a list, want to check if there is any element
appearing more than once.

Dictionaries (Maps)

Dictionaries / maps

Lists:
- a sequential collection of objects

Dictionaries:
- a non-sequential (unordered) collection of objects

- a more flexible look up by keys

- can do look up by index (the position in the collection)

-

Dictionaries / maps

0 “slkj2”

“4@4s”

“as43”

“9idj”

1

2

3

4

List

a = [None]*5
a[0] = “slkj2”
a[1] = “4@4s”
a[2] = “as43”
a[3] = “9idj”
a[4] = “9idj”

keys values

5 users, store user passwords

Dictionaries / maps

d = dict()
d[“alice”] = “slkj2”
d[“bob”] = “4@4s”
d[“charlie”] = “as43”
d[“david”] = “9idj”
d[“eve”] = “9idj”

keys values
“alice”

“bob”

“charlie”

“david”

“eve”

“slkj2”

“4@4s”

“as43”

“9idj”

HASH
TABLE

- hash using the key
- store (key, value) pair

- unordered

- values are mutable

- keys form a set
 (immutable, no repetition)

Properties:

Dictionaries / maps

users = dict()

users[“alice”] = “sl@3”

users[“bob”] = “#$ks”

users[“charlie”] = “slk92”

users = {“alice”: “sl@3”, “bob”: “#$ks”, “charlie”: “slk92”}

users = [(“alice”, “sl@3”), (“bob”, “#$ks”), (“charlie”, “#242”)]
users = dict(users)

Creating dictionaries

Dictionaries / maps

for key in users:
 print(key, d[key])

print(users[“frank”])

print(users.get(“frank”))

print(users.get(“frank”, 0))

Error

prints None

prints 0

users = {“alice”: “sl@3”, “bob”: “#$ks”, “charlie”: “slk92”}

Example: Find most frequent element

Input: a list of integers

Output: the most frequent element in the list

0
1
2
3

countelements
of the list

Exercise: Write the code.

