
June 7, 2017

15-112
Fundamentals of Programming

Week 3 - Lecture 3:
Efficiency Continued + Sorting

The Plan

> Sorting a given list

- Selection sort

- Bubble sort

1. Algorithm
2. Running time
3. Code

- Merge sort

> Measuring running time when the input is an int

Integer inputs
def isPrime(n):
 if (n < 2):
 return False
 for factor in range(2, n):
 if (n % factor == 0):
 return False
 return True

Simplifying assumption in 15-112:

Arithmetic operations take constant time.

Integer inputs
def isPrime(n):
 if (n < 2):
 return False
 for factor in range(2, n):
 if (n % factor == 0):
 return False
 return True

What is the input length?
= number of digits in n

~ log10 n

Integer Inputs
def isPrime(m):
 if (m < 2):
 return False
 for factor in range(2, m):
 if (m % factor == 0):
 return False
 return True

What is the input length?
= number of digits in m

~ log10 m

What is the running time?

(actually because it is in binary)log2 m

So N ⇠ log2 m

O(m) O(2N)=

i.e., m ⇠ 2N

Integer Inputs

def fasterIsPrime(m):
 if (m < 2):
 return False
 maxFactor = int(round(m**0.5))
 for factor in range(3, maxFactor+1):
 if (m % factor == 0):
 return False
 return True

What is the running time? O(2N/2)

Not feasible when .N = 2048

isPrime

Amazing result from 2002:
There is a polynomial-time algorithm for primality testing.

Agrawal, Kayal, Saxena

undergraduate students at the time

However, best known implementation is ~ time. O(N6)

isPrime

So that’s not what we use in practice.

The running time is ~ .O(N2)

It is a randomized algorithm with a tiny error probability.
1/2300(say)

Everyone uses the Miller-Rabin algorithm (1975).

CMU
Professor

The Plan

> Sorting a given list

- Selection sort

- Bubble sort

1. Algorithm
2. Running time
3. Code

- Merge sort

> Measuring running time when the input is an int

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Find the minimum element.

Put it on the left.

Repeat process on the remaining n-1 elements.

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Current min: 0

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Swap current min with first element of the array

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Swap current min with first element of the array

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Current min: 2

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 40

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Current min: 4

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 40

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Current min: 5

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 7 99 5 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Current min: 7

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 99 7 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Current min: 99

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Current min: 8

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 99 80

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Swap current min with first element of unsorted part

Selection Sort

Selection Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Done!

Selection Sort

Selection Sort: Running Time

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Selection Sort
How many steps does this take (in the worst case)?

(As N increases, small terms lose significance.)

⇠ N + (N � 1) + (N � 2) + · · ·+ 1 =
N2

2
+

N

2

Running time is .O(N2)

Selection Sort: Code

2 8 7 99 4 50

start len(a) - 1

Find the min position from start to len(a) - 1

min position

Swap elements in min position and start

Increment start

Repeat

Selection sort snapshot:

Selection Sort: Code

2 8 7 99 4 50

start len(a) - 1

Find the min position from start to len(a) - 1

min position

Swap elements in min position and start

for start = 0 to len(a)-1:

Selection sort snapshot:

Selection Sort: Code

def selectionSort(a):

Find the min position from start to len(a) - 1
Swap elements in min position and start

2 8 7 99 4 50

start len(a) - 1

min position

for start = 0 to len(a)-1:

for start in range(len(a)):
currentMinIndex = start
for i in range(start, len(a)):

if(a[i] < a[currentMinIndex]):
currentMinIndex = i

(a[currentMinIndex], a[start]) = (a[start], a[currentMinIndex])

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

8 2 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 8 7 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 99 5 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 99 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 99 04

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 0 994

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 0 994

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 7 8 5 0 994

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 8 5 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 8 5 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 8 5 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 8 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 8 0 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 7 5 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 7 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 7 0 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 5 0 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

4 0 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

0 4 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

0 4 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

0 4 5 7 8 992

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Bubble Sort: Algorithm

Sort a given list of integers (from small to large).

2 4 5 7 8 990

Compare each pair of adjacent items (left to right).

Swap them if they are in the wrong order.

Repeat until no more swaps are needed.

Bubble Sort

Large elements “bubble up”

Bubble Sort: Running Time

Sort a given list of integers (from small to large).

2 4 5 7 8 990

How many steps does this take (in the worst case)?

Bubble Sort

O(N2)

Bubble Sort: Code

repeat until no more swaps:

for i = 0 to end:

if a[i] > a[i+1], swap a[i] and a[i+1]

decrement end

Bubble sort snapshot

4 7 5 0 8 992

enda[i] a[i+1]

Bubble Sort: Code

4 7 5 0 8 992

enda[i] a[i+1]

repeat until no more swaps:
for i = 0 to end:

if a[i] > a[i+1], swap a[i] and a[i+1]
decrement end

def bubbleSort(a):
swapped = True
end = len(a)-1
while(swapped):

swapped = False
for i in range(end):

if(a[i] > a[i+1]):
(a[i], a[i+1]) = (a[i+1], a[i])
swapped = True

end -= 1

Merge Sort: Merge

Merge

The key subroutine/helper function:

merge(a, b)

Input: two sorted lists a and b

Output: a and b merged into a single list, all sorted.

Turns out we can do this pretty efficiently.

And that turns out to be quite useful!

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11 12

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11 12

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11 12 15

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11 12 15

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11 12 15 16

Merge Sort: Merge Algorithm

Merge

8 9 11 1 3 124 1615a = b =

c =

Main idea: min(c) = min(min(a), min(b))

1 3 4 8 9 11 12 15 16

Merge Sort: Merge Running Time

Merge

8 9 11 1 3 124 1615a = b =

c =

Running time?

1 3 4 8 9 11 12 15 16

N = len(a) + len(b)

O(N)# steps:

Merge Sort: Algorithm

merge merge merge

merge merge

merge

Merge Sort

Merge Sort: Running Time

Total:O(N logN)

O(N)

O(N)

O(N)

O(logN) levels

