
June 1, 2017

15-112
Fundamentals of Programming

Week 2 - Lecture 3:
Lists

Builtin Data Types

NoneType absence of value None

bool (boolean) Boolean values True, False

int (integer) integer values to

long large integer values all integers

float fractional values e.g. 3.14

complex complex values e.g. 1+5j

str (string) text e.g. “Hello World!”

list a list of values e.g. [2, “hi”, 3.14]

Python name Description Values

�263 263 � 1

...

String vs List

A sequence (string)
of characters.

s = “hw2-1 was hard”

string list

A sequence of
arbitrary objects.

a = [1, 3.14, “hi”, True]

immutable mutable

s[0] = “H” a[0] = 100

Lists: basic usage

for i in range(len(c)):
 print(c[i])
for item in e:
 print(item)

print(e[1:4])

c = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
d = list(range(1, 11))
e = [1, 3.14, None, True, “Hi”, [1, 2, 3]]

e[2] = 0
print(e[::2])

b = list()
a = [] # creates an empty list

also creates an empty list

d = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Lists: basic usage
print([1, 2, 3] + [4, 5, 6])
a = [0] * 5
print(a)

if (1 in a):
 print(“1 is in the list a.”)

if (1 not in a):
 print(“1 is not in the list a.”)

b = [0, 0, 0, 0, 0]

if (a == b):
 print(“a and b contain the same elements.”)

[1, 2, 3, 4, 5, 6]

[0, 0, 0, 0, 0]

Lists: built-in functions

print(len(a))

a = list(range(1, 11))

print(min(a))

print(max(a))

print(sum(a))

a = sorted(a)

a = [4, 5, 1, 3, 2, 8, 7, 6, 9, 10]

print(a) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Lists: interesting example

x = 1
y = x
x += 1
print(x, y)

x = [1, 2, 3]
y = x
x[0] = 4
print(x, y)

2 1

[4, 2, 3] [4, 2, 3]

immutable vs mutable

2843

2844

2845

2846

2847

2848

2849

2850

Address

memory cell...
...

Let’s take a closer look

immutable vs mutable

2843

2844

2845

2846

2847

2848

2849

2850

...
...

x = 5

y = 4

Immutable objects

5x

y 4
x = 1

y -= 2

immutable vs mutable

2843

2844

2845

2846

2847

2848

2849

2850

...
...

x = 5

y = 4

x = 1

y -= 2

Immutable objects

5

4

x 1

y

immutable vs mutable

2843

2844

2845

2846

2847

2848

2849

2850

...
...

x = 5

y = 4

x = 1

y -= 2

Immutable objects

5

y

4

x 1

2

immutable vs mutable

2843

2844

2845

2846

2847

2848

2849

2850

...
...

x = 5

y = 4

x = 1

y -= 2

Immutable objects

5

x

y

4

1

2

Garbage

immutable vs mutable

2843

2844

2845

2846

2847

2848

2849

2850

...
...

x = 5

y = 4

x = 1

y -= 2

Immutable objects

x

y

1

2

“Garbage is collected”

immutable vs mutable

x = 5

y = 4

Immutable objects

x

y

5

4

immutable vs mutable

x = 5

y = 4

Immutable objects

x

y

5

4
x = 1

immutable vs mutable

x = 5

y = 4

x = 1

Immutable objects

x

y

5

4

1

immutable vs mutable

x = 5

y = 4

x = 1

y -= 2

Immutable objects

x

y

5

4

1

immutable vs mutable

x = 5

y = 4

x = 1

y -= 2

Immutable objects

x

y

5

4

1

2

immutable vs mutable

Immutable objects

x 5x = 5

immutable vs mutable

Immutable objects

x

y

5x = 5

y = x

immutable vs mutable

Immutable objects

x

y

5x = 5

y = x

x += 1

print(x, y)

immutable vs mutable

Immutable objects

x

y

5

6

x = 5

y = x

x += 1

print(x, y) 6 5

immutable vs mutable

x = 5

y = x
In reality:

In practice:

5
y

x

5

y

x

5

Immutable objects

(seems like a good thing)

immutable vs mutable

x = [1, 2, 3]

Mutable objects

1 2 3

x x[0] x[1] x[2]

So actually,
a list is a sequence of references (variables)!

immutable vs mutable

x = [1, 2, 3]

y = x

Mutable objects

1 2 3

x

y

immutable vs mutable

x = [1, 2, 3]

y = x
1 2 3

x

y

Mutable objects

x[0] = 4 4

immutable vs mutable

x = [1, 2, 3]

y = x
1 2 3

x

y

Mutable objects

x[0] = 4 4

print(y[0])

x and y are aliases.

4

immutable vs mutable

x = [1, 2, 3]

y = [1, 2, 3]

Mutable objects

print(x == y)

print(x is y)
True

False

1 2 3

x

1 2 3

y

immutable vs mutable

With simpler data types, immutabality is useful.
(no side effects)

With complex data types, mutability and aliasing is useful.
(avoid copying large data)

Suppose you have a list of names.

You add another name to the list

copy the whole list.

immutable vs mutable

If lists were immutable:

“Alice” “Bob” “Charlie” “David”

x

.......

x = [“Alice”, “Bob”, “Charlie”, “David”,] a million
names

immutable vs mutable

x = [“Alice”, “Bob”, “Charlie”, “David”,]

“Alice” “Bob” “Charlie” “David”

x

.......

If lists were immutable:

x += [“Jordan”]

.......

“Jordan”

a million
names

immutable vs mutable

“Alice” “Bob” “Charlie” “David”

x

.......

But lists are mutable

x += [“Jordan”]

“Jordan”

x = [“Alice”, “Bob”, “Charlie”, “David”,] a million
names

immutable vs mutable

names = names.replace(“Bob”, “William”)

names = “Alice,Bob,Charlie,…” a million
names

Suppose you want to change Bob to William:

Strings vs Lists

Creates a new string with a million names.

immutable vs mutable

def changeName(a, oldName, newName):
 for index in range(len(a)):
 if (a[index] == oldName):
 a[index] = newName

changeName(names, “Bob”, “William”)

The list of names is never duplicated/recreated.

names = [“Alice”, “Bob”,] a million
names

Strings vs Lists

names and a are aliases.
changes to a affect names.

immutable vs mutable

Immutable ----> make copy every time you change it.

If dealing with huge strings, or
need to modify a string many times:

convert the string to a list first:

longText = list(“Once upon a time, in a land far far away...”)

converting the list back to a string:

longTextString = “”.join(longText)

Strings vs Lists

List operators and methods

2 types:

Destructive

Non-destructive

- modifies original list

- does not modify original list
- creates a new list
(with strings, for example, this is what happens)

List operators and methods

Adding elements
Destructive NonDestructive

a = [1, 2, 3]
a.append(4)

a.extend([5, 6])

a += [7, 8]

a.insert(1, 1.5)

a = [1, 2, 3, 4]

a = [1, 2, 3, 4, 5, 6]

a = [1, 2, 3, 4, 5, 6, 7, 8]

a = [1, 1.5, 2, 3, 4, 5, 6, 7, 8]

same as extend

a = [1, 2, 3]
b = a + [4]

c = b + [5, 6]

b = [1, 2, 3, 4] a = [1, 2, 3]

c = [1, 2, 3, 4, 5, 6]

d = c[:1] + [1.5] + c[1:]
d = [1, 1.5, 2, 3, 4, 5, 6]

b = [1, 2, 3, 4]

IMPORTANT!

a = [1, 2, 3]
b = a
a += [4]
print(a)
print(b)  

a = [1, 2, 3]
b = a
a = a + [4]
print(a)
print(b)  

[1, 2, 3, 4]
[1, 2, 3, 4]

[1, 2, 3, 4]
[1, 2, 3]

a += [4] not same as a = a + [4]

List operators and methods

Removing elements
Destructive NonDestructive

a = [1, 2, 3, 1, 2, 3, 1, 2, 3]
a.remove(3)

a.remove(3)

a.pop()

print(a.pop(0))

a[1:3] = []

a = [1, 2, 1, 2, 3, 1, 2, 3]

a = [1, 2, 1, 2, 1, 2, 3]

a = [1, 2, 1, 2, 1, 2]
1

a = [2, 1, 2, 1, 2]

a = [2, 1, 2]
del a[1:]

a = [2]

a = [2, 1, 2, 1, 2]
b = a[:1] + a[3:]
b = [2, 1, 2] a = [2, 1, 2, 1, 2]

List operators and methods

def remove(someList, element):
 for index in range(len(someList)):
 if (someList[index] == element):
 someList.pop(index)

def total(someList):
 t = 0
 while(someList != []):
 t += someList.pop()
 return t

Never change the list
if you don’t need to!

Common Mistakes

Index range changes
every time you pop.

print(a)

a = [1, 2, 3, 1, 2, 3, 1, 2, 3]
print(total(a))

[]

List operators and methods

sort vs sorted
Destructive NonDestructive

a = [1, 2, 3, 1, 2, 3]

a.sort()
a = [1, 1, 2, 2, 3, 3]

a = [1, 2, 3, 1, 2, 3]

b = sorted(a)
b = [1, 1, 2, 2, 3, 3]
a = [1, 2, 3, 1, 2, 3]

List operators and methods

finding an element

a = [1, 2, 3, 1, 2, 3]

print(a.index(2)) 1

print(a.find(2)) ERROR: no method called ‘find’

print(a.index(4)) ERROR: 4 is not in the list

if (4 in a):
 print(“4 is at index”, a.index(4))
else:
 print(“4 is not in the list.”)

List operators and methods

others

https://docs.python.org/3/library/stdtypes.html#typesseq-mutable

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Summary

Destructive
(modifies the given list)

NonDestructive

+, *+=

every method that
manipulates the list

del statement

functions

Be careful about aliasing
(especially with function parameters)

slicing

Tuples

The immutable brother of lists

Tuples

myTuple = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

myTuple = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 # not recommended

myTuple = (1, “hello”, 3.14, True)

parallel assignments
(x, y) = (1, 2)

myTuple = (1,) # Put comma for one element tuple

myTuple[0] = 2 ERROR

Tuples

return multiple values in a function

def firstPrimeInList(a):
 for i in range(len(a)):
 if (isPrime(a[i])):
 return (i, a[i])
 return -1

Exercise Problem

Lockers Problem

1 2 3 4 5 6 7 n

...

...

